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HYPERPLANE ARRANGEMENTS,
GRAPHS, MATROIDS,
AND ORIENTED MATROIDS

Arrangement of pseudospheres

Example. Intersection of an hyperplane arrange-
ment with a central sphere.




Matroid

bases: pseudosimplices, bases for linear algebra,
spanning trees in graphs

example: 124, 125, 126, 134, 135, 136, 146, 156,
234, 235, 236, 245, 256, 345, 346, 456

cocircuits: subsets not containing a given vertex



Oriented matroid

signature: choice of a halfspace + for each e € F
reorientation of A C E: change signature on A
signatures <>reorientations

acyclic reorientation: when the intersection of
halfspaces + is a region

regions <>acyclic reorientations




Graph

graph G = (V, FE)
associated hyperplane arrangement:
{x;—xz;=0fori,j €V and (¢,j) € £ }

edges <+ hyperplanes
acyclic orientations <+ regions
cocircuits = cocycles <> vertices (faces of dimension 0)
circuits = elementary cycles <+ minimal dependant sets
bases = spanning trees <+ simplices




A PROBLEM ON
THE TUTTE POLYNOMIAL

A curious property

The number of regions that do not touch a given
hyperplane, resp. the number of acyclic orien-
tations in a graph with unique source and sink
adjacent on a given edge,

does not depend on
the chosen hyperplane, resp. edge.

This number is (M), coefficient of z (or y) in the
Tutte polynomial ¢(M;z,y) of the matroid M.



The Tutte polynomial

- generating function of rank and cardinality :

t(M;z,y) = Y (z—1)"" Wy -1kt
ACE

- generalisation of the chromatic polynomial of
graphs to two dual variables (19507)

t(M;z,y) =t(M";y, x)
- numerous significative evaluations

t(M;1,1) = # bases of M

- various apparitions (knots, physical models...)

- famous inductive definition by deletion/contraction



Acyclic orientations

e Th. A. Stanley (1973) : x(G;—1) = t(G;2,0)
= # acyclic orientations of the graph G

e Th. B. Zaslavski (1975), Las Vergnas (1975) :
(Th. B = Th. A)

t(M;2,0) = # regions of the arrangement M

e Th. C. Greene Zaslavski (1983), Las Vergnas
(1977) : the coefficient of x (or y), B(M) = b1 =
bo,1, 1s the number of regions not touching any
given element (on one side).

e Th. D. Las Vergnas (1984) :
for a total order on M oriented matroid

L\ o*(— Yio(—
(i) = 3 5y Carn(Yyeoars
ACE

a region M satisfies o(M) = 0, so Th. D. = Th. B.

a region M does not touch the smallest element
if o(M) =0 and 0*(M) =1, s0 Th. D. = Th. C.



The basis state model
(activities of bases, Tutte 1954)

M matroid on a linearly ordered set E
B basis of M

e € £\ B is externally active with respect to B
if e is the smallest element of the (unique) circuit
C'(B;e) contained in B U e.

b € B is internally active with respect to B if b

is the smallest element of the (unique) cocircuit
C*(B;e) contained in (£ \ B) Ue.

erv (B) = # externally active elements w.r.t. B
vy (B) = # internally active elements w.r.t. B

(Miag) = Y ey
B base of M

t(M;x,y) = Zb,]azy

where b; ; = # bases with activities (1, ).



Example. Base 256 of K 4.
- fundamental cocircuits:

C*(256: 2
C*(256: 5
C*(256; 6)
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Int(256) = 0, 1(256) = 0,

- fundamental circuits: C'(256;1) = 1256,
C'(256;3) = 356, C'(256;4) = 246.
Eat(256) = 13, £(256) = 2.




fundamental tableau:
lines = C*(B;b) for b€ B
rows = C'(B;e), foree E\ B

2561 2 3 4 5

Sy Ot == W N
P4
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An orientation state model
(Las Vergnas 1984)

M oriented matroid on a linearly ordered set FE

o(M) = # minimal elements of positive circuits
of M

0*(M) = # minimal elements of positive cocir-
cuits of M

Yy
TR SEEA M)
ACFE

Tt yJ

(Ms2,0) = Y 00i(5) ()

where 0; ; = # reorientations with activities (i, j).
o(M) = 0 if and only if M is acyclic (region).

o*(M) = 0 if and only if M is totally cyclic
(strongly connected for a connected graph).
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Remark. Activities situate regions with respect
to the minimal base for the lexicographic order.

regions with dual activity 1 are bounded regions,
when the smallest element is infinity.
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The problem

M oriented matroid on a linearly ordered set FE

_ it
05 = 2"

Construct and study a
Natural activity preserving correspondence
between bases and reorientations

compatible with the above equality

- find a natural bijection between (1,0)—bases
and pairs of opposite bounded regions, for

01,0 = 2b1 0

- use a decomposition of activities to extend this
bijection from (1,0) activities to (i, ) activities.
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THE CANONICAL
ACTIVE CORRESPONDENCE

First decomposition

of activities
from (7,7) to (¢,0) and (0, j) activities

Theorem (Etienne, Las Vergnas 1998)

t(M;z,y) = Y H(M/F;z,0) t(M(F);0,y)

F flat of m
E\F flat of nm*

e Activities of reorientations
F' = union of positive circuits of M
F* = union of positive cocircuits of M

Proposition. £ = F + F* (‘Farkas lemma’)
M/F is acyclic, i.e. o(M/F) =0,
and M (F) is totally cyclic, i.e. o*(M(F)) = 0.

Geometrical interpretation : F* corresponds to
the intersection of halfspaces +.
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e Activities of bases
Base 234 =23 U4

125 Base 23 de M (123) :
internal act. 0

Base 4 de M /123 :
external act. O

124 S

2341 2 3 4 5
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Second decomposition
of activities
from (¢,0) to (1,0) activities

decomposing sequences of a matroid:

0 )=F c..CF,=F=F/c..CcF'=E

Such a sequence is asociated to any basis or re-
orientation.

Theorem (Gioan, Las Vergnas 2002)

tM;z,y) = >

— !/ !
(Z)—FSC...CFO—F

— ! 1 _
F_FO C...CF,'=FE

decomposing
(11 sa(Fy)/F )
1<k<¢

(....1<k<e 5(M(Flg,—1)/Flg)) rty©
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e Activities of reorientations

a1 < ... < ay the dual-orientation active elements

of M

for 0 <7</ —1,
F; = union of positive cocircuits with smallest
element a > a;41

\=F,CF. {C..CFLCF,=F

M; = M(E\ F;)/(E\ Fi-1)
Mz'n(Fi_l \ Fz) = Qa;.

Proposition.
For1<i</¥, o*(M;)=1, o(M;)=0

activity class of M: the set of 2¢ reorientations
obtained by reorienting the £ subsets, they all
have same decomposing sequence

e Activities of bases : similar but more technical
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Extension theorem
Example. Base 125 of K4
two minors M (145) and M /145.

123456 123456 123456 123456

AAAA

145+236

236

S
A

15 145+236 2
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Fundamental bijection
for (1,0) activities

e (1,0)-active reorientations: bounded regions

e (1,0)-active bases.

- the smallest element of a line (except the first)
belongs to a previous line.

- the smallest element of a row belongs to a pre-
Vious row.

13511 2 3 4 5 6

Sy Ot == W N
P4
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e From (1,0)-bases to bounded regions.

the reorientation ¢(B) is chosen so that, in the
fundamental tableau of B in ¢(B):

- the minimal element of each row is +
- the minimal element of each line is -
(except the first)

1351 2 3 4 5 6
I |+ + +
9 i,

3 -+ + X
4 -

5 - X + X
6 i,

two dual algorithms: consider lines, or rows, step
by step, each unsigned element is signed opposite
with the smallest element (except first line).
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Proposition. We get a bounded region.

Examples.

Base 135

Step 1

Step 2

Step 3
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4 1
6 2
7 3 5
T=1457
3 3 3
4 1 4 1 4 1
6 N2 6 N o N2
7 g 5 7 g 5 7 g 5
(1.1) (1.2) (1.3)
3 3 3
4 1 4 1 4 1
6 N2 O N o N2
7 g 5 7 g 5 7 g 5
(2.1) (2.2) (2.3)
3
4 1
on N2
7 8 5
(1.4) = (2.4)
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Main theorem. (Gioan, Las Vergnas 2002)
This application defines a bijection.

Laconic proof . impossible figure

e From bounded regions to (1,0)-bases.

¢~ (M) is the optimal base of the bounded region
M, it is the unique (1,0)-basis whose fundamental
tableau satisfies the required sign properties.

- inductive algorithm by deletion/contraction of
the greatest element

- extensions of linear programming
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EXTENSIONS OF
LINEAR PROGRAMMING

In usual linear programming, the first cocircuit
(first line) is optimal if it is positive and the first
fundamental circuit (first row) is negative (except
for the minimal elements)

Here, we consider ALL lines, and ALL rows: we
optimize a sequence of nested faces (all lines),
with respect to a sequence of objective functions

(all rows)...

135

1 2 3 4 5 6

Sy Ot == W N

+ + +
-+ + X
- X + X

... and we get a bijection.
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First example
of oriented matroid program

We optimize with respect to one objective func-
tion (here f) and get two optimal vertices
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First extension

of oriented matroid program
multiobjective programming

We optimize with respect to » — 1 objective func-
tions (here fs, then f3), and get a unique optimal
vertex.
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Second example
of oriented matroid program

We get the same optimal vertex for two distinct
regions.
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Second extension

of oriented matroid program
flag programming

The ordered (1,0)—base associated with a region
defines an optimal sequence of nested faces, there
is a distinct solution in the two regions.
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Some situations

C(B;f)

C'(B:by) V

in rank 4

C'(B;by)

Cc'(Bif)

C(B;b)

C'(B;b)

(1)

C(Bif)

C(Bib) C'(Bib,)

C(Bib)

C(Biby)

C'(Bib)
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CANONICAL (ATTR)ACTIVE
CORRESPONDENCE

6A

phenomenon of attraction with respect to the lin-
ear ordering
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ACTIVE BIJECTIONS
M matroid, G graph

(1,0) bases <+ bounded regions of M,
bipolar orientations of G

(7,0) bases <> activity classes of regions of M,
acyclic orientations with unique given sink of G

(i,0) bases <> subsets with no broken circuit N'BC

(4, 7) bases <+ activity classes of (re)orientations
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